On Complete Bergman Metrics

نویسنده

  • SHOSHICHI KOBAYASHI
چکیده

(Strictly speaking, one should put ( —1)"2/2 in front of £)'> but this is not essential in the following discussion.) Suppose F is ample in the following sense: (A.l). For every z in M, there exists an/ in F which does not vanish at 2. (A.2). For every holomorphic vector Z at z, there exists an/ in F such that / vanishes at z and Z(f *) ^0, where /=/ * dz1 A ■ ■ • Adzn with respect to a local coordinate system z1, ■ • ■ ,zn of M. If F satisfies the conditions (A.l) and (A.2), then the Bergman metric ds2 is defined by

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double Integral Characterization for Bergman Spaces

‎In this paper we characterize Bergman spaces with‎ ‎respect to double integral of the functions $|f(z)‎ ‎-f(w)|/|z-w|$,‎ ‎$|f(z)‎ -‎f(w)|/rho(z,w)$ and $|f(z)‎ ‎-f(w)|/beta(z,w)$,‎ ‎where $rho$ and $beta$ are the pseudo-hyperbolic and hyperbolic metrics‎. ‎We prove some necessary and sufficient conditions that implies a function to be...

متن کامل

The Equivalent Classical Metrics on the Cartan-hartogs Domains

In this paper we study the complete invariant metrics on CartanHartogs domains which are the special types of Hua domains. Firstly, we introduce a class of new complete invariant metrics on these domains, and prove that these metrics are equivalent to the Bergman metric. Secondly, the Ricci curvatures under these new metrics are bounded from above and below by the negative constants. Thirdly, w...

متن کامل

Hermitian-einstein Metrics for Vector Bundles on Complete Kähler Manifolds

In this paper, we prove the existence of Hermitian-Einstein metrics for holomorphic vector bundles on a class of complete Kähler manifolds which include Hermitian symmetric spaces of noncompact type without Euclidean factor, strictly pseudoconvex domains with Bergman metrics and the universal cover of Gromov hyperbolic manifolds etc. We also solve the Dirichlet problem at infinity for the Hermi...

متن کامل

Canonical coordinates and Bergman metrics

In this paper we will discuss local coordinates canonically corresponding to a Kähler metric. We will also discuss the C ∞ convergence of Bergman metrics following Tian's result on C 2 convergence of Bergman metrics. At the end we present an interesting characterization of ample line bundle that could be useful in arithmetic geometry.

متن کامل

Bergman Kernel and Kähler Tensor Calculus

Fefferman [22] initiated a program of expressing the asymptotic expansion of the boundary singularity of the Bergman kernel for strictly pseudoconvex domains explicitly in terms of boundary invariants. Hirachi, Komatsu and Nakazawa [30] carried out computations of the first few terms of Fefferman’s asymptotic expansion building partly on Graham’s work on CR invariants and Nakazawa’s work on the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010